

Surface Enhanced Raman Scattering (SERS) for Characterisation of Inks for Cultural Heritage

Daniela Iacopino Tyndall National Institute University College Cork Cork, Ireland

daniela.iacopino@tyndall.ie

Inks in Works of Art

- Largely used by modern artists $(20^{th} 21^{st} \text{ century})$.
- Suffer from easy degradation.
- Identification of ink composition is a key starting point to appropriate conservative treatment and storage conditions.
- Ink composition identification is difficult:
 - $_{\circ}\,$ Protected by patent
 - Pens go out of production every few years => Composition changes often
 - Database non existing

Modern Inks Knowledge Gaps

- Composition
- Aging mechanisms

BIC Ballpoint Blue

Color change

Stabilo Prussian Blue

Discoloration

Stabilo Green

Color migration

Images courtesy of Antonio Mirabile and CSGI

Surface Enhanced Raman Scattering (SERS)

- SERS first observed by M. Fleischman in 1973
- Increase of Raman signals up to 10⁻¹¹ orders of magnitude of analytes in close proximity to metal rough surfaces

Key characteristics

- Fingerprint of analytes
- Non destructive
- In situ and ex-situ analysis
- Minimum sampling or no sampling required
- No sample preparation or extraction required
- Background fluorescence interference

SERS of Modern Inks

Tyndall

Mainly ballpoint pen forensic analysis performed

- Enhancement of Raman signals due to fluorescence background quenching
- $_{\rm O}$ Oxidation of Ag observed, fast analysis required
- $_{\odot}$ Poor signal due to the negative charge of both dyes and NPs
- $_{\odot}$ Coffee stain effects in evaporated Ag NP solutions. Not uniform detection
- Ex-situ, extraction required

TLC and SERS spectra of blue ballpoint pens Geirman, I. et al., J. Forensic Sci.. 2009, 54, 947-952

Our Ambition

- Widening SERS art application
 - Low cost
 - Tailored plasmonic properties and surface charge
 - Chemical stability and uniformity for repeated analysis
 - In situ and ex situ non invasive analysis
- Understanding compositional information and fading mechanisms

Au NR arrays

Au NR Seed-Mediated Synthesis

Au NR TLC/Raman Analysis of BIC pen

- Attribution of TLC bands made possible by Raman enhancement provided by Au NRs
- Enhancement due to the overlap of Au NR plasmon band to the excitation wavelength

Synthesis of NR Arrays

Evaporation of Au NR organic solutions followed by stamping on substrates

- Uniform arrays from self-assembly of Au NR solutions
- Low-cost SERS substrates

Metal Nanoinks

11

Plasmonic Calligraphy

In situ, portable instrumentation

In-situ Analysis of Pink Stabilo with Au Nanoink

R6G identified with use of portable instrumentation

In-situ Analysis of Yellow Stabilo with Au Nanoink

- Handheld Raman 785 nm excitation
- Tartrazine identified with use of portable instrumentation

In-situ Analysis of Red Stabilo with Ag Nanoink

- R6G identified with use of portable instrumentation
- All red and pink colors showed presence of R6G

SERS Substrates from Coke Cans

C b d 100 nm 500 nm

Pen MeOH solution dropped and dried on PVDF-Ag substrates

- Drop and dry analysis
- SERS signals highly enhanced
- 514 nm excitation wavelength

PVDF-Ag SERS

Normal Raman

PVDF-Ag Ink Yellow identification

PVDF-Ag Ink Green identification

PVDF-Ag Ink Prussian Blue Identification

PVDF-Ag Ink Pink Identification

Conclusions

- Not one universal SERS substrate can be used
- Fabrication of chemically stable SERS probes for in situ and ex situ analysis
- Identification of BIC pen ink mixture with Au NRs SERS/TLC method
- Detection of BIC pen traces signals (< 0.1 $\mu M)$ with Au NR arrays
- Felt-tip pens analyses in situ with metal nanoinks
- Ex situ analysis of felt tip pens with PVDF-Ag substrates

Acknowledgements

- Ms Abeer Alyami
- Ms. Niamh Creedon
- Ms. Alexandra Di Gioia
- Ms Zahra Alhawashim
- Dr. Daniela Saviello
- Dr. Alfonso Martin
- Mr. Antonio Mirabile, paper conservator, Paris
- Centre For Advanced Photonics and Process Analysis, CAPPA
 - Dr. Liam Lewis
 - Dr. Micheal McAuliffe

Analysis of BIC Pen Lines with Metal Nanoink

SERS with Nanorods and Nanorod Arrays

- Increased electromagnetic field => enhancement of radiative properties (scattering, absorption)
- Coupling of EM fields in closely spaced nanorod lattices => HOT SPOT FORMATION
- Enhanced optical effects (SERS, fluorescence, antenna...)

Non-invasive Analysis on Paper

- Possible illumination from the back
- SERS spectra obtained under dry conditions

id Náisiúnt

Raman Investigations of Inks

- Raman spectroscopy provides a fingerprint by which molecules can be identified
- Excitation light interacts with molecular vibrations resulting in the energy of the laser photons being shifted up or down. ONLY inelastic scattered light collected
- Identification of inks in ancient manuscripts

Key characteristics

- Non destructive
- In situ and ex-situ analysis
- Minimum sampling or no sampling required
- No sample preparation or extraction required
- Fingerprint of analytes
- Weak signals
- Background fluorescence interference

Sodo, A. et al., J. Raman Spectrosc. 2012, 43, 1781-1787

••

Surface Enhanced Raman Scattering (SERS)

- SERS first observed by M. Fleischman in 1973
- Increase of Raman signals up to 10-11 orders of magnitude of analytes in close proximity to metal rough surfaces
- Electromagnetic and chemical enhancements

Au NR TLC/SERS Analysis of BIC pen

- Possible attribution of spots
- Purple spot => CV, blue spot => phtalocyanine

SERS Enhancement

• Overlap between nanorod plasmon resonance and laser excitation wavelenght